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1. Executive Summary
A summary of progress for the period April 1989 through October 1989
follows

i ) Parallel Architecture: The Stanford DASH multiprocessor advances the
state of parallel computing by combining the programmability of shared-
memory machines with the scalability of distributed-memory machines.
The key idea on which DASH is built is that of distributed directory-based
cache coherence; caches of the processors are kept coherent by s g
point-to-point messages between processors on a sca rconnection
network. Our efforts in the recen ocused on finalizing the
design of the DASH e prototype will consist of 16-64 MIPS
R30001R3010 ssors delivering up to 1200 MIPS of processing power.
The i onnection network used will consist of a pair of meshes, each

16-bit wide channels and will use wormhole routing. The design of the
/ cache coherence protocols and the associated state machines is also

complete at this point. We expect to have a 16 processor DASH prototype
( running by Fall 1990.

i.- 7Parallel Software: We have developed a compiler algorithm that applies a
large set of loop-level optimizations to improve data locality in programs.
These optimizations include loop interchange, roversal, skewing, and
subblocking. Our technique is unique in that these optimizations are)
unified into a general transformation, thus we can find tl- s t
optimizations without trying every transformatioanseqteriti.-This new
approach to loop tra -r-W-• s-6'Z used in vectorizing and
concurrnjzaý t piilers. We have started on the implementation of our
•Pisleer. We have defined and implemented an intermediate format to
represent programs that supports experimentation of both scalar and
parallelizing optimizations.

,7 Super-Scalar Design: We have investigated how much parallelism is
available at the lowest level -- in the base instruction stream of a processor. -•

Our initial work in this area [1] showed, for the non-scientific applicatioroj-2
we are interested in, it is possible to execute a program rjhabtueT ffihe
number of cycles needed-b- -eonie'ntt6iia-l'VRhSC machine. This work
poi•jLa-e-_hat-hnIinain problem was in the area of instruction fetching

-and not really contention for functional units.

Multi-level Caches: The presence of a second-level cache can decrease the
optimum size and cycle time of the first-level cache, and significantly
improve performance beyond the best attainable with a single level of
caching. *he optimal characteristics of the second level-cache depend on
the miss ratio of the first-level cache, but in general an optimal second level
cache will be significantly larger and more likely to be associative than if it
were alone ýp the system. This is because the presence of the first-level
cache reduces the number of accesses to the second level without
significantly i'educing the number of misses in that cache. This shifts the
tradeoff away from short cycle times and towards low miss ratios [2].
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BiCMOS RAM: During this period we designed a 64K sRAM in TI's .8u
BiCMOS technology. The design uses a novel BiCMOS row and column
decode that maintain the speed of an ECL diode decode, while reducing the
its power dissipation. The RAM is functional rwith an access time of 4ns,
but some design errors have made testing difficult. We are working on
correcting these problems.

k BiCMOS CAM: Using a new BiCMOS CAM cell we have designed and built
a TLB with a 4ns (pad to pad) translation delay. The 64-entry, fully-
associative TLB was simply a demonstration vehicle for the CAM cellJ iwhich uses small ECL-like swings to improve its performance.

Testers: A single chip tester, called Testarossa, contains a dRAM for the
test vector storage, a decompressor to increase the effective vector size, and
the pin electronics for 16 DUT pins Each chip can drive 16pins, runs at
over 25Mvectors/sec, and can hold 2 out 10KVectors/pin. The chip provides
a per-pin architecture, with2 e resolution of less than a ns [3, 4]. To build
an IMS-cl _a-r using this part would require 16 tester chips

r cost under a few thousand dollars.

Computer Aided Design: in the area of algorithm and tool development for
high-level synthesis we have targeted two goals: control generation for
synthesized structures and relative scheduling techniques under timing
constraints. We have now two high-level synthesis tools: Hercules and
Hebe. The fo0mer performs behavioral level synthesis into an intermediate
form that /an be easily simulated. The latter performs user-directed
structurF synthesis, and it embeds the implementation of the algorithms
descibed before. The Hercules/Hebe tools have been used for two chip

,Are'igns: a digital audio interface chip (CD or DAT to PC) and a
K discriminator of a multi-anode photodetector for the space telescope.

We had a major breakthrough in optimal logic synthesis of digital
synchronous sequential circuits. We have developed algorithms for
minimizing the area of synchronous combinational and/or sequential
circuits under cycle time constraints and the cycle time under area
constraints. Previous approaches attacked this problem by separati Ag the
combinational logic from the registers and by applying circuit
transformations to the combinational component only. We have shown
instead how to optimize concurrently the circuit equations and the register
position. This method is novel and achieves results that are Ft least as good
as those obtained by previous methods. A computer implrmentation of the
algorithms in program MINERVA has been tccomplished and
experimental results have supported the theory.

7-j Simulation: The goal of this research is to provide application tools for the
proposed scalable shared memory multiprocessor. -We propose to develop a
general purpose simulation environment which' serves as an interface
betwee ,. application programs and the underlying machine architecture
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and operating system. The operations of the simulation environment will
match those of the processors; hence only a minimum amount of overhead
will be incurred for synchronization and communications in the course of
computation. A generic user interface will be provided for users to specify
their application programs, which will cover the domains of scientific
computation, behavioral simulations for large complex systems, computer-
aided design for fast prototyping, computer networks and communications
protocols, and manufacturing and mechanical simulation.
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2. Technical Progress:

2.1 Parallel Processor Architecture

Design of Scalable Shared-Memory Multiprocessors
As stated in our previous report, we are currently pursuing the design of a
scalable multiprocessor. Our design goals for this machine are: (i) it
should be a general purpose machine; (ii) it should be a good target for the
work being done on parallelizing compilers and parallel programming
languages; and (iii) the architecture should be scalable to support a large
number of high-performance processors, so that the resulting machine is
significantly more powerful than the latest uniprocessors. Working
towards these goals, we are currently building the prototype of a scalable
shared-memory multiprocessor, called DASH (Directory Architecture for
SHared memory), that supports hardware cache coherence and provides
support for dealing with memory latency and synchronization.

At the top level, the DASH architecture consists of a number of processing
nodes connected through a high-performance low-latency interconnection
network. The physical memory in the machine is distributed among the
nodes of the multiprocessor, with both local and remote memory directly
accessible to each node. Each processing node, or cluster, consists of a
small number of high-performance processors with their individual
caches, a common cache for the cluster, a portion of the shared memory,
and a directory controller interfacing the cluster to the network. A simple
bus-based snoopy scheme is used to keep caches coherent within a cluster,
inter-node cache consistency is maintained using a distributed directory-
based cache coherence protocol. In this scheme, each processing node has
a directory memory corresponding to its portion of the shared physical
memory. For each memory line, the directory memory stores identities of
all remote nodes caching that line. Using this information it is possible for
a node writing a location to send point-to-point messages to invalidate
remote copies of the corresponding cache line. This is in contrast to the
invalidating broadcast usually required by the snoopy protocols. The
scalability of DASH is greatly enhanced by this ability to avoid broadcasts.
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Since our last report, the design of the machine has become quite concrete.

We have decided to use the Silicon Graphics 4D/240 workstations as the
individual nodes in our multiprocessor. The 4D/240 is itself a
multiprocessor consisting of 4 processors, with each processor consisting of

a 25MHz MIPS-R3000/R3010 set delivering about 20 MIPS of integer and 4
MFLOPS of floating point performance. The main reason for using a
commercial machine as the node in our prototype is to keep the size of the

design effort manageable, thus reducing the time to completion of the
prototype. It was a complex trade-off, since we do loose some design

flexibility, but we felt it was worth it. The interconnection network used in

the DASH prototype will consist of a pair of meshes, each with 16-bit wide
channels and will use wormhole routing. We have modified the Caltech
Mesh-Routing-Chips to suit our needs. The chips have recently come back

from fabrication and we are in the process of testing them.

During the past year, we have also been working on finalizing the directory-

based cache coherence protocol. We have moved away from the blocking
protocol we had originally proposed to a non-blocking protocol. In the non-

blocking protocol, when a request for a location that is dirty in a remote
cache is received by a directory, the directory forwards that request to the
remote cluster rather than. holding on to the request. This change reduces

the buffering requirements and enhances the performance of the machine.
We have also been spending time on the issue of level of consistency for

shared-memory in DASH. We have moved away from the traditional

notions of sequential consistency and weak consistency to a still weaker

form of consistency. We are calling our scheme release consistency. The
key idea is that the processor needs to wait for its writes to complete only

before unlock instructions, and not before and after all synchronization
instructions as required by weak consistency. We are currently doing

simulation studies to quantify the benefits.

With the design of the protocol finalized, we have been spending
considerable time on the design of the directory controller board. The

directory controller board will consist of (i) the directory memory, (ii) the
intercluster coherence state machines, (iii) the logic needed to support the

interconnection network, and (iv) a hardware monitor. The design of the
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state machines and the data paths is almost complete at this time. We have

also completed the design of the hardware monitor. We are currently
awaiting tools from VALID and Xilinx to begin schematic entry.

Finally, we have been spending time looking into operating system issues
for the DASH prototype. We will be either extending the current operating
system from Silicon Graphics or we will be porting MACH. We are talking
to both groups and having discussions with them. We are also exploring
implications of some special features that DASH needs, for example, TLB
consistency within a multi-cluster environment, double and triple mapping
of memory pages to support locks and prefetch mechanisms, and other
memory management and process scheduling issues.

Basic Architecture Studies and Simulation Tools Effort
One of our main focuses has been on ,)btainw. g multiprocessor memory
reference and synchronization traces from "real" parallel applications, and

using them for the design of parallel architectures. Our original studies
were done using traces obtained from a VAX-8350 (using modified

microcode). A major limitation of the microcode-based scheme was that it
was not possible to get traces for more than 4 processors. Subsequently, we

developed and used a scheme based on the VAX T-bit. This enabled us to
use an arbitrary number of processes but was too slow. It took about a week
to get a reasonable length 32 process memory reference trace. We now have

a new and powerful tool called Tango to help with this task.

Tango is a software tracing and simulation system that provides data to aid

in evaluating parallel programs and multiprocessor systems. The system
provides a simulated multiprocessor environment by multiplexing

application processes onto a single processor. Tango allows the user to
trace the shared memory and synchronization behavior of parallel
programs. The system is efficient, and can be used with a wide range of
machine and programming models. The Tango system currently runs on
the MIPS M120 and on the DECStation 3100. It is about 100-1000 times
faster than our old T-bit based trace generator, and thus qualitatively
changes the kinds of studies that we can do. In general, accurate tracing is
difficult since parallel programs are typically non-deterministic; the
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execution path through the program depends on the real time behavior of

the hardware system. Tango offers accurate tracing by allowing the user to

optionally integrate his shared memory and synchronization timing

simulations into the tracing environment, We currently have a detailed

simulator of the DASH prototype integrated with Tango. This system is

being extensively used for studying architectural tradeoffs and also for

verifying our directory-based coherence protocol.

We are also continuing our studies about invalidation patterns in
multiprocessors. Since our last report, we have gathered additional

information about the affect of varying the cache line size on invalidation

patterns. Our studies show that the best invalidation behavior is achieved

when the cache line matches the size of the data objects being shared. Both
line sizes that are too small and line sizes that are too large can drive up the

average number of invalidations per shared write. We note, however, that

this effect is not very strong. Consequently, it appears that high

performance multiprocessors should use a large cache line size (32 - 64
bytes) to benefit from pre-fetching effects and to hide network latency

encountered in scalable shared-memory multiprocessors.

2.2 Parallel Software

In the area of compiler research, we have made progress in two directions.

First, we have developed an algorithm to improve data locality. Second, we

have defined and implemented a compiler intermediate format to support

parallelization.

Algorithm to Improve Data Locality

We have developed a new approach to loop-level transformations, and
applied it to improving data locality in code. While our current focus is
increasing a uniprocessor's cache hit ratio, this technique can be extended

also to improving data locality for multiprocessors, a crucial factor in the
performance of large-scale parallel systems.

Previous research on loop-level transformations has identified a set of loop

transformations that are useful for vectorization and concurrentization;
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they include loop interchange, subblocking, quantization, reversal, and

skewing. The same optimizations have can also be used to increase data

locality in programs. However, in general, little is known about when to
apply which of these optimizations. The strategy typically used is one of
"generate and test": apply different sequences of stepwise code

transformations and evaluate the worth of all unique final designs.

We have discovered that the key transformation that improves locality is

subblocking, and that the purpose of all other transformations is only to
make it legal to subblock the desirable loops. Therefore the algorithm
consists of (1) a procedure to identify the loops to subblock, and (2) a
procedure to transform the loops so as to maximize the number of desirable
loops subblocked. The former procedure is specific to data locality and is

formulated as finding the kernel to a "locality" matrix. The latter
procedure, described below, addresses the general problem of finding the
right combination of optimizations for a given objective.

Our new approach can find the best program without exhaustively testing
all legal combinations of stepwise transformations. We have unified the
transformations of loop interchange, reversal and skewing, showing that a
single general transformation can achieve the result of all combinations of
stepwise optimizations. For example, a series of loop interchange is simply

a permutation of the loop ordering. This is significant because we can
systematically and effectively search the space of final designs; we avoid
exhaustive enumeration by pruning the search space with our evaluation

function.

Our current work includes (1) implementing the algorithm and gathering
empirical data, (2) extending the data locality algorithm to multiprocessors
and (3) applying this new code transformation technique to code

parallelization.

Compiler Implementation

The compiler we are constructing is unique in that it integrates both high-
level parallelizing transformations and scalar optimizations in a common
framework. Existing parallelizing compilers use two separate programs: a
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source-to-source compiler performs high-level code restructuring, and a
conventional compiler that translates source code into object code. The
integration of parallelization and scalar optimizations is important because
scalar information can be used for parallelization and vice versa. Many of
the standard scalar optimizations such as constant propagation and
forward substitution are useful for parallelism detection. Conversely, if we
want to exploit instruction level parallelism, this high-level data
dependence information must be made available to the machine code
scheduler. Moreover, a clean, simple internal representation is more
conducive to high level code transformations than the source level
representation.

One of the key issues in integrating the parallelizing and scalar
optimizations is the intermediate code representation. The former set of
optimizations needs higher level information and the latter needs lower
level information. We have identified the necessary high-level information
to be control constructs and array accessing operations. We have developed
a dual code representation that allows different optimizations to view the

same information at different levels.

We have gained some experience in using the intermediate format by
building several rapid prototypes of code transformations. We have
uncovered some weaknesses and have corrected them in our current
design. Although we expect the intermediate format to evolve as we develop
our optimizations, we believe that we now have the basic functionality to

support our experimentation on both scalar and parallelizing

optimizations.

23 Uniprocessor Archtecture

Super Scalars
We have continued our work on investigating how much parallelism is
available at the lowest level -- in the base instruction stream of a processor.
Our initial work in this area [1] showed, for the non-scientific applications
we are interested in, it is possible to execute a program in about one-half the
number of cycles needed by a conventional RISC machine. But to achieve
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this type of speedup in hardware required branch prediction, a four wide

instruction decoder, out-of-order execution, and register renaming [5] -- a

non-trivial amount of hardware.

The out-of-order issue allows an instruction B that logically follows A to be

issued before A if it does not have any data dependencies. Register

renaming increases the available parallelism by removing data

dependencies that arise because of storage conflicts, caused by register

reuse. To implement these features in hardware is difficult at best, and
would require a fair amount of hardware. We are currently investigating

methods of moving these steps out of the hardware and into the compiler

system. The question we are trying to answer is what percentage of the
available parallelism can a software system capture. Our approach is to

change the hardware slightly to allow the software to move code through
branches, giving the compiler more opportunities to optimize the code. At

present we have the basic compiler up and running, and have a system to

estimate the performance advantage of moving code through branches. We
also have a proposal for the basic machine organization. Our next step is to

complete the work on the software, and if the results look promising to flesh

out the machine details.

2.4 Computer Aided-Design

High-level Synthesis.

In the area of algorithm development for high-level synthesis we have
targeted two goals: control generation for synthesized structures and
relative scheduling techniques under timing constraints. The former

problem is the one of generating control that achieves the highest possible

performance (in terms of number of cycles) for arbitrarily nested structures
and in the presence of non-deterministic delays. Arbitrary nesting at no
performance cost allows for the unlimited use of procedure calls in

hardware description languages for synthesis without having to expand

them in the synthesis phase. Allowing for non-deterministic delays
corresponds to supporting synchronization and data-dependent iteration

primitives. The latter problem allows for the well-posedness and validity

check of timirng bounds of the number of cycles taken by sequences of
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operations in the presence of non-deterministic delays as well as the

construction of a valid schedule.

As far as tool development is concerned, we have now two tools: Hercules

and Hebe. The former performs behavioral level synthesis into an
intermediate form that can be easily simulated. The latter performs user-
directed structural synthesis, and it embeds the implementation of the

algorithms described before. The Hercules/Hebe tools have been used for
two chip designs: a digital audio interface chip (CD or DAT to PC) and a
discriminator of a multi-anode photodetector for the space telescope.

Logic Synthesis
In this area we had a major breakthrough in optimal logic synthesis of
digital synchronous sequential circuits. We have developed algorithms for
minimizing the area of synchronous combinational and/or sequential

circuits under cycle time constraints and the cycle time under area
constraints. Previous approaches attacked this problem by separating the

combinational logic from the registers and by applying circuit
transformations to the combinational component only. We have shown

instead how to optimize concurrently the circuit equations and the register
position. This method is novel and achieves results that are at least as good
as those obtained by previous methods. A computer implementation of the

algorithms in program MINERVA has been accomplished and
experimental results have supported the theory.

2.5 Simulation

Parallel simulation has been proposed to explore the potentials of the DASH

multiprocessor machine for CAD applications. Integration of existing
simulators (THOR, IRSIM, and SPICE) for mixed-mode circuit and system

simulation has been developed to provide a parallel multi-level simulation

environment. Parallelism is obtained within each simulator by
decomposing its simulation into smaller blocks and among the simulators
by providing a communication and synchronization interface between

them.
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At a first stage, algorithms for distributed and parallel simulation were
investigated. Research has been conducted on extensions to the known
time-stamped algorithms by Chandy and Misra. These extensions consist

of adding additional information to time-stamped messages: besides the
time of an event, an interval of duration and a label to uniquely identify
events are added in each message, which would help to reduce deadlock
occurrence, increase concurrency, and reduce communication traffic

overhead.

A prototype that integrates VLSI CAD simulators to test and examine these
concepts is under development. The simulation environment serves as a
printed circuit board backplane where existing simulator programs are
plugged in to run in parallel either at the same design level or at different
design levels to function as an harmonic parallel mixed-level simulator.
Basically the simulation environment consists of a kernel to handle the
interface between simulators and to coordinate their computation. Also the
environment handles conversion between design levels as in the case of
logic signals and circuit signals. The simulators being integrated consist

of THOR, a behavioral simulator for use with system design at either the
functional and register transfer level, IRSIM, a switch level timing
simulator for digital circuits, and SPICE, a general-purpose circuit

simulator.

The prototype system is being implemented on a network of DEC
workstations and will be transported to a multiprocessor machine after the
programs have been tested. The design of a high rate adaptive filter

consisting of more than 30 chips will be the first example that we use to
measure the simulation performance. Three types of simulators at the
behavioral level, the switch level, and the circuit level will be necessary to

be incorporated into the simulation as we need both custom-design and
commercial chips to implement the filter system. The speedups obtained
from using a multiprocessor for mixed-mode simulation will be evaluated.

2.6 VLSI Design

12



We have been continuing our efforts to exploit iihe capabilities of integrated

circuit technologies for high speed systemas. During this period we have

continued our effort BiCMOS, testing and high-speed arithmetic.

BiCMOS
Our work in BiCMOS has continued in three fronts: fast sRAMs, innovative
BiCMOS logic circuits, and CAD tools for BiCMOS. In the area of fast

sRAM we were very pleased to find out that our new BiCMOS memory cell
design, the CSEA cell, was used by a commercial company, Aspen, in their

3ns 4K BiCMOS RAM [6].

In this past period we designed a 64K bit sRAM. The RAM was designed in
in Texas Instruments' 0.8g BiCMOS technology, and was fabricated by TI.

The sRAM was designed to demonstrate it is possible to build a large, high-
speed (under 4ns) BiCMOS sRAM, while maintaining a reasonable power

dissipation (1.5W). It uses the CSEA cell, with a bipolar transistor in each
memory cell that we reported earlier. The design uses an innovative
address decoder that combines the high-speed of a standard diode decoder,
while greatly reducing the power that the decoder requires. The power

reduction is accomplished by replacing the resistor load in a diode decoder
with a pMOS device, and then using the gate of the pMOS to control its
resistance. This technique allowed us to reduce the decoder power by a

factor of 4, which reduced the power of the part by about a factor of 3. The
sRAM also used a novel write-path. Instead of having a set of CMOS
decoders for writes, the RAM uses the read decoders and provides a ECL-

CMOS converter per worldline. Sharing the decoder increases the write
speed, while reducing the complexity of the part.

The parts have returned from fab and we are currently testing and

debugging them. Unfortunately the design needed to be finished in 2
months to meet the fab deadline. As a result there are three design errors

that we have found. By probing the design we have confirmed the basic

operation of the RAM, and using a focused-ion beam machine from Seiko
we have partially repaired on chip. The chip has a read access time of
4.5ns, which is slower than expected. We expect to have better results soon.
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In addition to the 64K RAM, during this last period we have also come-up
with a new BiCMOS CAM cell. To demonstrate the features of the CAM,
we designed a 64 entry, fully associative TLB in TI's BiCMOS technology.
The CAM uses small signal swings on all the critical paths. The
experimental data shows a 4ns translation delay, from virtual-address in to
translated address out. Removing the pad delay, the internal speed of the
device is on the order of 3ns. This CAM should be useful for high-speed

computers.

The last major part of our BiCMOS effort is in creating CAD tools to support
BiCMOS designs. We are using Magic for layout, but simulation is a much
more difficult problem. To try fill the current gap in simulation tools for
BiCMOS circuits we are working on Bisim, an Rsim like simulator for
Bipolar and BiCMOS circuits. Like Rsim Bisim is a switch level simulator,
but unlike Rsim, Bisim understands that signals are voltages rather than
simple boolean values. This extra flexibility allows Bisim to handle a wider
class of circuits than Rsim can handle. In particular it should be able to
correctly simulate a wide class of sense circuits -- circuits that often occur
in BiCMOS. At this point we model both MOS and bipolar devices by
piecewise linear devices, and have written code that will find the final
values for networks of these devices. These algorithms have been
incorporated in Bisim, and we are now evaluating their performance by
trying to simulate the BiCMOS sRAM we designed. The initial results look
promising, but we have a significant amount of work still to do. Although
we have simple timing models in this version of the simulator, it seem like

these models might need some improving.

Integrated Testers

During this period we have continued to work on building a single chip
tester. The chip, called Testarossa, contains a dRAM for the test vector
storage, a decompressor to increase the effective vector size, and the pin

electronics for 16 DUT pins [7]. We have received the 2nd run of these
chips. This version was fabricated in a 1.6p CMOS technology, These chips
were fully functional, and preliminary testing indicates that we have
enough fully functional partb tU) build a 25G pin, 25 MHz tester.
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During this period we ha'e been working on getting the software for the

tester working, and working on designing the other component needed by

the tester. The chip has three delay generators per pin (a total of 48 in a
chip) so to make the circuits smaller there provide fine resolution, but low

accuracy. To set the delays accurately the system needs one precise time
reference, and then uses internal comparators to adjust the delay to make
the external reference. For the testing so far, we have used a set of HP
pulse generators. We are currently designing a CMOS chip to take this

function. It will contain a PPL and some precision delay generators
(generated using closed-loop feedback) to provide the clocks needed for the
tester. We hope to have this chip out to fabrication in 3 to 6 months.

High-Speed Arithmetic

We had previously shown how to build dense, fast multipliers by building a
partial multiplier tree, and pipeline the tree after every two carry-save

adders. Then by clocking the structure quickly (100s of MHz) one can
complete a multiply only slightly slower than a full tree. Recently we have
shown how to perform IEEE rounding in this type of structure, and high-
speed multipliers in general [8]. It turns out there is a way of starting the
final carry propagate add before the carry-in is known. This result is very
important since in iterative multipliers, the carry-in is only known I to 2

cycles after the rest of the result has been generated. Using this rounding
methods allows one to perform IEEE compatible multiplication nearly as
fast as producing a truncated result. The overhead in hardware is also not

too large, less than 25% added hardware.

We are again using division to test out some of our ideas in self-timed

design. Our goal is to build an iterating divider that runs as fast as the
combinational logic allows -- it is no slower than building the complete
array in hardware. To achieve this result we need to remove the latches
from the critical path (they would add delay) and insure that the control

signals never slcw down the computation. We are calling this self-timed
design style "No Overhead Logic". Our initial logic design work looks
promising, and we are tweaking the device sizes and timing before we go to

layout. We hope to have the design done by the end of the school year.
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